
Demystifying Max/MSP

A guide for musicians approaching
programming for the first time

by
Paul Schuette

Table of Contents

The World of Computer Programming

Max Pre-Basics

Lesson 1: Playing a Sound File

Lesson 2: Decision Making 101

Lesson 3: Simple Sequencing

Lesson 4: Live Sound

Lesson 5: A Serving of Amplification Issues with a Smattering of
! Variable Handling on the Side

Lesson 6: Introduction to User Control

Lesson 7: Effects

Lesson 8: Synthesis

Lesson 9: More on Flow Control

Lesson 10: Randomness

Lesson 11: Cleaning up Your Patches

Lesson 12: Alternate Controlers

Lesson 13: Jitter

Lesson 14: Building Applications

Object Index

Table of Contents

The World of Computer Programming

Max Pre-Basics

Lesson 1: Playing a Sound File

Lesson 2: Decision Making 101

Lesson 3: Simple Sequencing

Lesson 4: Live Sound

Lesson 5: A Serving of Amplification Issues with a Smattering of
! Variable Handling on the Side

Lesson 6: Introduction to User Control

Lesson 7: Effects

Lesson 8: Synthesis

Lesson 9: More on Flow Control

Lesson 10: Randomness

Lesson 11: Cleaning up Your Patches

Lesson 12: Alternate Controlers

Lesson 13: Jitter

Lesson 14: Building Applications

Object Index

Demystifying Max/MSP

Objective

 My early experiences with Max/MSP were during my undergraduate years of
college. Professors, who were primarily music teachers with no programming
background, walked us through a few of the tutorials that come with the program. These
teachers intuitively saw that Max could have extraordinary benefits, yet their abilities only
allowed them to provide us with an introduction at best. More importantly, they were
unable to present the program to us in a way that would enable us to use it to our own
creative ends. This being the case, the purpose of this book is to provide musicians, and,
specifically, music teachers with a resource that allows them to present the abilities of
Max/MSP to their students despite their own level of programming experience.

 The line which these teachers offered to those of us who were thirsty to know more,
was “Read the tutorials.” This is a line that the Max community still stands by, however,
this can only be an affective means of learning Max if you already possess some basic
programming skills. Programming languages are languages, so image the following
scenario: You are trying to learn a spoken language, like French, but you have no idea
what nouns, verbs, articles or even letters are. The point is once you know the basic
components of any spoken language it is possible to learn any other language by “reading
the tutorials.” Programming languages are no exception. For this reason, this book
assumes that the reader has no idea what the basic components of a programming
language are. This book is intended to approach Max/MSP as your first programming
language, for it will lay a foundation and build upon it step by step, never using any
vocabulary without introducing it first.

 This is not to say that the resources available within and around Max are totally
useless. Many of the tutorials are written very clearly, and at times, this book will also
reference help patches and other resources that are already included in the Max
environment. The problem is that these resources are of varying type and purpose and are
found in so many different places that it is hard to for someone just starting out to
understand how they fit together. So while this resource does not aim to entirely replace
all of this information, it offers the beginner an insight into how all of the available
resources can be used in concert so that the road to creative freedom with Max/MSP can
be travelled with confidence.

Why Use Max/MSP?

 I have heard is said many times that, “Max can do anything you want it to,” when it
comes to manipulating and handling sound. While this is undeniably true, it is also true
that many of the things which you could do in Max are much more easily and efficiently
achieved with other more polished pieces of software. So what are the unique abilities
that Max has that other programs do not offer? While there are multiple answers to this
question, for my purposes the answer is resoundingly clear: It is Max’s ability to handle

input data. This ability, to handle live incoming data and have it affect output, gives you a
platform from which to create performance patches that are adjustable in real time,
interactive performance situations for musicians, interactive installations, cross continental
web based performance patches, and the list goes on and on. If it is unclear what this all
means or how it all fits together, then this book is what you are looking for. After
completing all of the lessons, you will be able to use Max/MSP in a creative and flexible
way that will open the door for you to all of its myriad possibilities.

Purchasing

 Max is currently in its 5th version and is available from cycling’74. There are
student prices as well as an option for a 9 month trial.

 Cycling’74 makes a version of the program called Max/MSP Runtime which is
available for free download. This version of the program only allows you to run patches
that have already been written. It is useful when you want to operate a patch on another
machine which does not have the full version of Max installed.

 In addition to these options, there is an alternate freeware version of the program
called PureData, or PD for short. It is developed and maintained by the creators of Max
with the intent of being a leaner and faster version of the prepackaged program. The
differences between the two are almost entirely aesthetic with the exception of a few
identical objects that have different names. These discrepancies are pointed out within
each lesson as they arise making it possible to use this book in conjunction with either
Max or PD.

The World of Computer Programming

Max’s Place on the Map

 Max, at first glance, may not appear to be a proper “programming language.”
When most of us hear this term, our minds immediately turn to scripted pages of computer
vomit with more punctuation than text. While these types of programming languages do
exist, they are really not as scary as they may seem, and, moreover, they are not the only
type of programming languages around. For an analogy, it might be helpful to return to
the notion of spoken languages. Think of low level procedural languages as being
equivalent to Latin and Ancient Greek: they form the basis of most modern languages even
though very few people actually still speak them. Max is based on these low level
languages, but exists in a more highly evolved hybrid state like the English language.
Technically, Max is an object based programming language with a graphical user interface
(GUI). This means that the lines of code which define each object do actually exist, but
that you as the programmer never have to see them. Instead, the objects serve as a
graphical representation of these lines of code making them much more intuitive to
handle. In this way, Max blurs the line between what a programming language is and
what an application is. In truth, it truly is a mix of the two. Some might put it in the class
of a programming environment, but it might be best described as an application for
programming.

Programming Culture

 The fact that hybrid application/languages even exist brings up an important point
about how these languages have evolved. Again, the ties to the development of spoken
languages seems apt. English is a Creole language, which means that it is an
amalgamation of many different languages all rolled into one. It has been so well
established that its roots no longer seem of any importance. For example, it would seem
utterly absurd for someone to learn English by beginning with Latin and tracing the
evolution of the entire language from the bottom up. This same type of hierarchy exists
around computer languages. Nobody has written a piece of code using 1’s and 0’s for
decades, except to prove their geekhood to the two people who care. Max is a very high
level language that has evolved from many other languages.

 The larger issue here is that outright stealing is an accepted part of programming
culture. Pieces of code are borrowed, share and ripped from other people, and this is
what you are expected to do. The best programmers working right now never start with an
entirely blank screen. The problem is that people who are new to writing computer code
sometimes feel a tinge of morality running up their spine when they “borrow” a piece of
code for the first time. But imagine the comparison: nobody feels like they are stealing
anything from the people who spoke Latin when they are teaching their kids English.

 Admittedly, there is a different issue at work here with first time programmers, and
that is the desire to know about the levels of abstraction that lie beneath the programming
language they are currently dealing with. These are right and good things to be curious

about, for no matter what level of technology you are operating at you should always be
aware of the levels of abstraction that surround it. However, when you stumble upon the
first piece of code that somebody else has written that you find to be absolute genius take
it and sleep well at night, for you are paying that person homage.

Pseudocode

 It is often helpful to begin writing a computer program by describing what you want
to have happen in plain English. This is absolutely the best advice I can think of to offer
someone who is writing a computer program for the first time. For example, simply state
the function of the program like, “I want to record this sound and play it back at this point
in time and at this speed.” This is referred to as a pseudocode and is a good habit to get
into early and will speed up your learning curve ten-fold. Writing pseudocode allows you
to begin writing your program by tackling the portions that you know how to achieve first
and then filling in the gaps. Going from something to something else is always easier than
starting with nothing. . . or something like that.

How Computer’s Think

 The nice thing about computers is also the thing that is most frustrating about them:
they do exactly what you tell them to do. I’ve never felt the difference between man and
machine more intensely than when I think I’m telling my computer exactly what I want it
to do but its doing something completely different. The difference is that I care and start
spitting fire at the screen, but the computer just sits there still doing the thing I don’t want
it to do.

 The point here, if I may beat an already long dead horse, is that writing a piece of
computer code is similar to the process of writing anything else: it is never going to come
out perfectly the first time. In the programming world, this process of revision is known as
debugging and it is an essential yet tedious part of writing any piece of computer code.
Nobody likes it, but everybody has to do it. My advice is to remember that the computer
looks at the world through a soda straw: it sees one thing at a time and in the order in
which you tell it to do so. So just remember, when your computer isn’t doing what you
want it to, it’s because you told it to do it that way, and when you feel yourself getting
angry, walk away before you do more harm than good.

Max Pre-Basics

Let’s begin with a quick vocabulary lesson:

Object: objects are the primary building block of the Max/MSP programming language
(more detail on these in a minute).

Patcher: when people refer to a patcher, they are usually talking about the most basic type
of window that the application uses. Its like saying, “Open a blank document,” when
talking about a word processing program.

Patch: the code that you will write using Max is commonly referred to as your “patch.”
We will get to the root of this terminology later, right now its important to understand the
difference between the patcher window and your patch.

The patcher window is the primary Max window and is the platform upon which all of
your code will be written.

Here is a patcher:

From left to right the buttons across the bottom serve the following functions:

The patcher window has two modes: locked and unlocked. Currently, as you can see the
patcher is unlocked. When the patcher is unlocked, changes can be made to the
patch, i.e. objects can be added and removed. When the patcher is locked, the
patch will run, i.e. buttons can be pushed, numerical values can be entered and
sound can be heard.

This button allows you to add objects and everything else available to your patch.
The same menu can be viewed by double clicking within the patcher window as
the background so grandly implies. The very first item in the top left of the pop up
window is for a generic, yet to be defined, object.

When your patches get bigger, “zoom” offers a way to easily navigate to different
regions of your patch.

This button allows you to switch the patch in and out of “Presentation Mode”: a
new feature of Max5, see Chapter 11 - Cleaning Up Patches for more on this.

Skip the next three which are not bolded.

These last two give you a choice about whether or not you want new objects to
conform to a grid and whether or not you want to see said grid as you are
programming. The choice is yours.

The Object

As I already mentioned, objects are the building block of any Max/MSP program, and they
look like this:

Take time to note how we will refer to the various aspects of objects.

DSP Window/Max Window

 The DSP (digital signal processing) window is found under the Options / DSP status
drop down menu at the top of the screen. The DSP window tells you whether Max is
ready to make sound or not and how that sound will be made. The most important fields
are the ones at the top that show a list of all the available input and output drivers your
computer has at its facility. If your patch is not making any sound when you think it
should, look here first. Another thing to note here is the CPU% box which tells you how
much of your computers processor is being used by your patch - with time you’ll be
surprised at how CPU intensive your patches can become. This is also where you set up
MIDI devices.

 The Max window is found in the Window drop down menu. The Max window is
where you will find any errors in your patches that Max is trained to catch. You can also
print things to the Max window, but more on this later, just know where it is and how to
find it for now.

Inspector

 Also new to Max5 is the Inspector window. Each object has its own Inspector
window that you can access by highlighting that object and clicking on the Inspector icon
at the bottom of the patcher window or by clicking on the “i” icon that appears when you
scroll over the left side of any object. As you can see, different aspects of an objects
function and appearance can be manipulated from within that objects Inspector.

Referencing Objects

 As you delve into the Lessons, you will quickly notice that not all objects have the
same boxy little object-like appearance for some have rather elaborate interfaces. I will
reference all objects by their names, and this is all you will need to be able to find them.
No matter how fancy an object may appear it can still be implemented by typing its name
into an object box. Try nslider for a quick example.

Order of Operations: Right to Left

 Max functions from right to left. This means that if you are trying to get two things
to happen simultaneously the thing on the right will happen first. In most circumstances,
this is not an issue in large part due to the increased speed of central processors.
However, as you become more advanced, this issue may rear its ugly head, so for now just
store this fact away in the back of your brain for later use.

 Lesson 1: Playing a Sound File

 In this lesson, you will learn how to load a sound file from anywhere on your
computer into Max and you will be familiarized with one of the many options Max offers
for playback of that file.

This is a "message box". Messages are different than
objects. Messages are sent to objects and instruct the
receiving object to perform a task when clicked upon.
Different objects take different messages. In this instance,
the "read" message is telling the buffer~ to look for a
sound file to store.

To create a message, you can type message into an object
box, or they are also easy to find in the pop-up menu
which lets you add new items to your patches.

The black line is referred to as a "patch cord" as a throw
back to the days of analog audio. Patch cords are used to
make all connections in the Max environment. Hence

the terms patcher and patch.

buffer~ is an object which stores audio data so that it can be called upon at anytime.
Most objects take a series of arguments: additional information that further defines its
parameters. In the case of buffer~, the arguments give the buffer a name, set its length in
milliseconds and sets the number of channels. Once you have read a file onto the buffer,
double click on it to make sure that it's there. This buffer~ is called “soundfile” and is set
to store 10 seconds of audio on 2 channels.

	 Tip #1: 	 While most objects do not require that all of their arguments be
	 	 	 included, buffer~ seems to be happiest when all of its arguments
	 	 	 are in place. Generally speaking this is a good/safe mode of
	 	 	 operation and will save some inevitable debugging time.

 comments are a ubiquitous part of programming culture. Essentially, a comment is
exactly what its name implies: a little blurb of text that describes what is happening with a
piece of computer code - beyond this they serve no real function. Like writing
pseudocode, commenting your patches is a good habit to get into and I strongly
encourage you to comment your patches as you begin to work your way through these
early lessons. Comments can be added to your patches using either of the techniques
which were just outlined for adding message boxes.

This is a button. Any time it is clicked it sends out a "bang" which is used to
tell other objects to “start”, “go” or “make it happen”.

This is a message for the line~ object. Most messages that an object
understands will be demonstrated in the object help patch which you can
view by option+clicking on that object in edit mode. However, a complete
list of messages for an object can be found by clicking on the link in the
header of the help patch which says "open object reference".

line~ takes a message with a specific structure. The message gives line a
starting and ending number and then tells it how much time to take to count
between the two. So the message in this example could be parsed as follows:
Go from 0 to 10000 milliseconds in 10000 milliseconds. Take the time to
experiment with other combinations. You could go from 12 to 9999 in 4876
ms: this is the beauty of Max - ultimate flexibility.

This is a number~ box and will show the flow of information coming from the
line~ object.

Tip #2: Objects that include a ~ in their name handle audio data, other
objects simply handle raw numerical data. Some objects like "number"
come in both flavors.

play~ plays back audio that is stored on a buffer~. It requires an argument
that specifies the name of a buffer to read from: in this case "soundfile".

Patch cords that are checkered indicate that these objects are passing an audio
stream of data.

~ is an amplifier. It takes an audio signal (~) and multiplies it (). Values you
give it should range from 0.0 to 1.0 as anything over 1.0 will cause your audio
to clip.

Tip #3: To clean up a patch cord highlight it and type Apple + y.

dac~ stands for digital to audio converter and does exactly that. It converts
digital audio to analog audio so that it can be heard over your computer
speakers. Its default is for 2 channels of audio, hence the 2 inlets, however it

can be set for more channels than there are speakers in a Best Buy show room.

* Double click on dac~ to see the DSP window.

Lesson 2: Decision Making 101

 In this lesson, you will be introduced to the most basic tools Max has for making
decisions about streams of data.

select, or "sel" as it's referred to by those in the know, is an
extremely useful object. It takes any type of input and routes
it to a specific outlet. The outlet furthest to the right outputs
incoming data that does not match any of selects’
arguments.

Tip #1: Note that buttons are also useful for indicating
when something has happened.

Jargon Lesson: Computer programs, Max included,

differentiate between whole numbers, or integers (referred to as "ints") and
numbers with decimal points known as floating point numbers (referred to
as "floats").

A bang, from a button, does not have any numerical value and is therefore
rejected by select.

The toggle, when compared to the button, is the other equally important
type of trigger in Max. The biggest difference is that a toggle does output a
numerical value: 1 when it is on or true and 0 when it is off or false.
*Computer languages still reference good ole 1's and 0's all of the time. It
is extremely important to correlate the concept of 1 being on or true and 0
being off or false. This will come up time and time again.

<, less than, compares two numbers to see if something is true, and,
therefore, provides a great example of how the toggle functions.

Tip #2: The left inlet of most objects must be "banged" before the
object will produce anything. Place a button between the right
number box and the left inlet of < and see what happens.

All objects in Max which handle numerical data can take the argument
“0.” which allows them to function with floats including ==, equal to
and !=, not equal to . Notice that the floating point number box is also
required. Be sure you can follow the logic going on here. Can you
predict which position the toggle will be in when the number ares the
same.

Lesson 3: Simple Sequencing

! In this lesson, you will be introduced to metro and counter. Using these, objects
in combination with others that we have already covered, will allow you to create a patch
which coordinates the playback of sound files over time.

 By attaching a sel to your metro/counter combination, you will have achieved your
first successful sequencing tool with Max/MSP. Everything that has been added on should
look familiar from previous lessons. Don’t forget to “buffer~” a couple of sound files.
Have some fun adjusting the parameters of either metro or the messages that line~ is
receiving and see if you can get the sounds to overlap.

metro is Max's metronome. When turned on, with a toggle, it outputs a bang at
a specified number of millisecond (ms.). This argument can be included in the
object or changed dynamically with a numerical input to the right inlet.

counter does exactly what you would expect it to: it counts. It takes arguments
for direction (0 - up, 1 - down, 2 - up/down) and a range. This counter, as it's
set up now, counts up from 1 to 4. Take time to look at the help for counter to
find out about all of its other inlets and outlets. They will all be useful to you at
some point in the future.

Lesson 4: Live Sound

! So far all the sound that we have dealt with has been prerecorded. In this lesson,
we will examine the basics of bringing live sound into your Max patches.

adc~ is an analog to digital converter: which means it is
essentially a microphone. It takes real world sound and
digitizes it so that your computer can understand it. It will
listen to the input source you have selected in the DSP status
menu. Like dac~ it takes an argument for the number of
channels you want and defaults to 2 channels, however, unless
you are using a stereo mic, you will only need the first outlet.

*~ is functioning as a preamplifier. Inserting this helps to insure
that you’re recording at a good level and without clipping.

Adding a meter, the gray box, helps you to visualize how much
sound is coming in.

record~ is in the same family of objects as play~ because it
requires a buffer~ to record onto which must share the same
name. It also takes an argument for the number of channels.
Recording is started and stopped with a toggle to the leftmost
inlet.

A write message to buffer~ allows you to save an audio file to
 your hard drive.

Here's the sequencer we built in the last lesson incorporating live sound:

 Recording is started on beats 1 and 3 and turned off on beats 2 and 4. On beats 2
and 4, the recordings that were made on beats 1 and 3, respectively, are heard. Clap or
whistle on beats 1 and 3 and you will quickly understand what I’m talking about.

Lesson 5: A Serving of Amplification Issues
with a Smattering of Variable Handling on

the Side

 In the sequencer patch that we just built, you might have noticed some issues with
unwanted pops and clicks in the audio. These occur whenever you try to start digital
audio at full amplitude. Solving this problem in Max is a major headache for experienced
people who do this stuff all the time. In this lesson, I am going to present one option for
solving this problem. We are going to make a ramp that goes from 0.0 to 1.0 and back to
0.0 in exactly the amount of time it takes to play any sound. This ramp will ultimately be
plugged into an amplifier (*~), removing those pops and clicks from the edges of your
sounds. To achieve this we first need to tackle one major issue: variables and how to
handle them.

As you might have suspected, lists of numbers can also be
“unpacked”.

Now is as good a time as any to introduce one of the most
useful objects in the entire language. del (short for delay,
similar nomenclature to sel) delays a bang for a set number
of milliseconds - which can be changed with a new
number in the right inlet similarly to metro. See the help
patches for tapin~ and tapout~ for the audio signal version
of del.

pipe is a very special kind of delay, for it delays a number,
instead of just a bang, for a set period of time. This one is
set to delay an int and a float for 500 ms. (the rightmost
inlet can alter the delay time).

pack takes data from separate sources and makes it into a list. It
creates a new inlet for every number you want to have included in
the list. Right now it is set to receive 2 floats.

Variables in Max are indicated with a “$”. We call them variables
because they have no defined value. This message has 2 variables:
$1 and $2. "Packing" the variables into one list allows us to place the
variables wherever we want to within a single message.

print allows data to be displayed on the Max window which you can
find in the Window drop down menu or by clicking Apple+m.

 Now that we've covered all the objects we'll need, let's look at how to actually put
something together that will eliminate all of those pops and clicks. As I already said, these
occur when you start a sound at full amplitude. So to eliminate the problem we'll
construct a ramp that can be applied to the value of an amplifier so that a sound never
starts or stops at full amplitude.

In the red box, we develop the message for line
that counts up in half the sounds length. We
“pack” together the peak of the ramp and the
time we want it to take to get there and put it
into a message that line can understand.

In the blue box, we develop the message for line
that counts down after the one that counts up is
finished. First we unpack the messages and
delay (or "pipe") the values for half of the sounds
length. Then we “pack” them back up again and
route them to line.

 Take
the time to understand every patch cords function in this patch. Notice which arguments
are floats and which are ints. This will help you follow the data throughout the patch.
Make sure you are able to describe the flow of this patch using plain English. Use number
boxes in your construction is you're not sure what value is getting to the different inlets -
this is a key part of troubleshooting any patch and a good lesson to learn early. If you can
get this one, you're well on your way. A lot of key concepts are at work here.

 If you’re feeling like you have a really good handle on this patch, try to simplify it
so that the ramp reachs 1. in 100 ms. and goes down 100 ms. before the sound ends. This
can be done with fewer objects!

(We'll get to these guys at the end.)

input the length of the soundbang when the
sound starts

This value is the
peak of the
ramp

The math here takes off a 100 ms from the total length of the
sound (-) to ensure that the ramp is finished by the time the
sound ends and then divides (/) the total time in 2 so that
the ramp knows when to reach its peak.

Tip #1: We are just using line here and not line~ because we are only
handling numerical data, no sound is being handled by this patch.

 Understandably, you might still be confused about how to actually implement this
thing. The explanation has in part to do with the little green and blue boxes that say i and
o. These are inlets and outlets, respectively, just like you'd find on any other object. By
adding these, we can save this patch in Max's file structure so that it can be called upon
just like any other preexisting object. Here's how to create your first, very own, Max
object:

1. Save the patch with a catchy object-like name that describes its function, like
"ampramp."
2. Go into Applications/Max5/Cycling '74 and create a folder for your objects, like "My
Objects."
3. Save the object into the newly created folder. Restart Max, and now when you go to

add a new object, “ampramp” should now be in the list.

Now you can create the following click free sequencer:

Lesson 6: Introduction to User Control

Let start by going over some new objects:

loadbang and loadmess are very closely related objects. They
allow you to set values and messages automatically whenever
a patch is opened so that you don't have to load them by
hand every time you open the patch. loadbang just sends out
a bang, as you might have expected, and loadmess sends out
whatever message you have typed in as an argument. They
also work when you double click on them.

gate is an extremely useful little object which helps to control
the flow of information throughout a patch. gate takes data
in its right inlet and sends it out via which ever outlet is
specified at its left inlet. In this case, there are two outlets
(you can add more if you need them) and 0 always closes the
“gate”. gates with only one outlet are often controlled with a
toggle. In PD, a gate is know as a spigot.

When you repeatedly bang a math object, it doesn't continue
to add to the value. Have you noticed this problem already?
The answer to this problem is accum - short for accumulator.
It does just what a simple + object won't: it continues to add
to the total. Notice that it doesn't output anything until you
bang the leftmost inlet. The right most inlet is for
multiplication.

key is the most basic type of user control after pointing and clicking with the
mouse. It allows you to utilize the keyboard in controlling your patches. Right
now it's set up to work with the space bar. The numbers it uses to reference the
keys are known as ASCII - they are one of the original standards still around in
the computer world. Search online for an ASCII table of numbers to discover
how to reference the other keys, or simply watch what comes out in the number
box when different keys are pressed. For other simple forms of user control,
check out hi.

 Tip #1: Some people have entire libraries of external objects which you can
download. A few that I suggest are “ftm”, “artificial tango” and “tap.tools” (this last
one costs money but is worth every penny).

 fiddle~ is a pitch tracker. It takes in audio data and tells you what midi value the
pitch is. It requires four arguments which are all explained in the fiddle~ help patch, but if
you're like me, you'll never need to fully understand them and can just copy and paste
them each time you call on fiddle~. Turn on your DSP and see what happens. Using
fiddle~ in performance can be done, but with the understanding that it is not 100%
acturate. Precautions must be taken with the way you set up your performance so that, for
example, microphones are only picking up the instruments you want to track and are not
getting sound coming from loudspeakers as well. It's probably most reliable with electric
instruments that can produce a signal which can be directly routed into your computer.
Precautions must also be taken with the way you handle the data coming from fiddle~ to
ensure that what you want to happen happens despite fiddle~'s inaccuracies.

mtof converts midi values to actual frequency.

So far we've only looked at play~ as a way to produce sound with Max,
and while play~ is a great object to know and extremely useful in many
situations it's time to move on to bigger and better things. groove~, also
uses a buffer~, but allows for looped playback. Looping is turned on and
off via a message. Make sure you understand how the variable is being
handled here (remember 1 is on and 0 is off). Don't concern yourself too
much with understanding the sig~ right now, just know that in tandem
with groove~ it allows you to control the speed of playback. 1 is normal
speed, .5 is half speed, 2 is twice as fast, etc.

fiddle~ is not an object which comes with your original installation
of Max. This is an important part of the Max culture: anybody can
create new objects and share them with the community online.
Some are similar to the “ampramp” and are built out of existing
objects, others are written in different languages entirely. The best
resource for external objects, as they're known, is
www.maxobjects.com. To use fiddle~, you'll have to get online
and download it and put it into Max's file path just like we did last
lesson with the “ampramp”. There will also be a help patch
included which you can put into one of the help folders.

 fiddle~ produces what we will refer to as an irregular or continuous data stream.
Sing one pitch and fluctuate the volume or wiggle the pitch around slightly and notice that
the number doesn't change but that multiple bangs are produced. This means that the
number is also being sent out that many times even though you don't see it changing. This
happens because fiddle~ is listening to incoming sounds at a very fast rate which is a good
thing because it lessens the chances of it missing something. However, this is a problem
when we want just one thing to happen when a performer plays a middle C, for example.
onebang is an object which helps to handle these types of data streams. It does just what
it says: it only lets one bang go through the left inlet until a bang to reset it is received in
the right inlet. Giving it the argument 1 sets it to allow through the first bang it gets.

 Another extremely useful object which aides in controlling irregular data streams is
change. change only outputs a number when the number it receives is different than the
last one it received. In other words, it waits for a “change” before it does anything. When
used with fiddle~, change functions like an intelligent version of onebang. Notice how
many bangs are registered when the patch on the left is functioning. The other two outlets
of change report changes from zero to non-zero numbers and vice versa, respectively.
These outlets can be helpful when you want one toggle, for example, to switch off when
another one is activated. Take the time to understand the logical flow of the patch on the
right, it is a brainteaser.

 Tip #2: For away to track rhythm explore the possibilities of using timer in
combination with fiddle~. Look for the “clever” hint in timer’s help patch and
discover what a “cooked” pitch is coming from fiddle~.

 Here it is finally all together in one patch. Ultimately, this patch is kind of silly, but
it demonstrates a lot of the thought processes that are involved with handling a data
stream and getting that data stream to perform a task. Take your time to understand
everything by trying to describe what's going on with plain English and remember that the
computer sees the world through a soda straw. If you have a keyboard close by, it's
probably your best bet for testing this patch. Be sure to buffer~ a couple sound files
before you try to listen to anything.

 By using del in tandem with onebang, you can set a sample time for looking at the
data that is much slower than the one fiddle~ uses.

60 is MIDI middle
C and 67 is the G
above middle C.
Play these pitches
to operate the gate.

Pitches below 60 and
above 67 are set to do
different things.

Lesson 7: Effects

 In terms of producing sound, so far we've only looked at ways to play back sound
files that you processed and edited in another program or that you recorded live with Max
and played back unaltered. Most effects that you find in a commercial sequencer can be
achieved in Max. I'm going to demonstrate just a few of them, but more importantly, give
you an idea of the variety of places where you will find Max effects.

This is an object called
radiogroup. Get into the
inspector to change how
many buttons there are.

reson~ is a pretty generic filter, but it does the job. It's
an object that comes with Max. It takes arguments for
gain, center frequency and Q (the tightness of the filter
around the center frequency). Try attaching line objects
to any or all of the parameters for sweeping effects.

This is an object called slider. Its
default range is 0-127, but this
can be altered in the inspector.

pan2 is a basic panner. Its second inlet takes values from -1 to 1;
its third inlet takes values from 0-127 (which conveniently works
with the default range of slider); and its last inlet allows you to
control the fade time of the pan. This "object" and a lot of other
cool effects can be found by taking the following file path: Max5/
Cycling '74/examples/spatialization/. There are lots of other really
interesting patches in the examples folder that I highly recommend
stealing from.

Another nice effect, included in
Max, is gizmo~: a pitch shifter. In
order to function properly, gizmo~
needs to be in between a couple of
other objects. To use gizmo~ what I
have always done is to open the
help patch and copy and paste the
following portion - which is in
green. This is a perfect example of
a time when it's the right thing to do
to steal something. Use the
keyboard (kslider) to change the
pitch of your clip by a certain
number of half steps.

 freeverb~ is a really basic, but good sounding reverb. It takes stereo input and
produces stereo output. All of it's parameters are controlled with messages to its left inlet.
I've included the three that I find the most useful, but you can find a full list in the
freeverb~ help patch. freeverb~, unlike the other three effects we've looked at, is not
included anywhere within the application. It has to be downloaded from the Internet and
installed just like fiddle~.

No need to know exactly what's going on here, but here's the jist of it: The
"0" message to the kslider essentially “zeroes” it on middle C, normally kslider
would output MIDI values. expr allows you to write your own mathematical
functions in Max. I know that's what it does, but I've never had an instance
where I've needed to do math that's so complicated that normal math objects
can't get the job done, but you might, so check out expr if you need it.

Lesson 8: Synthesis

 If the MSP tutorials have one strong point, it's that they do a pretty good job of
explaining how to use the program to achieve a couple different kinds of synthesis. The
tutorial on additive synthesis is about the best one they have, so check it out before you
work through this lesson. Having said that they completely ignore subtractive synthesis, so
we'll be sure to take a look at that. Max can be an incredibly powerful tool for synthesis
because it is so malleable, however, something new that we haven't really touched on is
that Max can also be a powerful teaching tool. When it comes to explaining different
wave forms, harmonics and other sonic phenomena, Max can help you visualize and
understand what's actually going on within these otherwise abstract concepts in a very
real way and more importantly it can save a lot of academic mumbo jumbo.

Waveform Generators / Teaching Tool

 The only thing new here are the waveform generators. cycle~ produces a sine
wave, cosine waves are also available with cos~. rect~, tri~, and saw~ are all fairly self
explanatory. If you're not familiar with this terminology, check out the scope~ (basically
an old school oscilloscope but not quite as heavy) and you'll be able to make a pretty
good guess about what they do.

Tip #1: Check out adsr~ or
function for easy ways to
generate an envelope
around any sound that you
synthesize.

Subtractive Synthesis

 This is an area we technically already touched on when we discussed filtering in
the lesson on effects. Filtering and subtractive synthesis are really synonymous concepts.
However, in the more tried and true tradition of subtractive synths, Max offers not one but
two different noise generators which are great for filtering since they contain waveforms at
all frequencies. noise~ produces traditional white noise and pink~ produces pink noise -
non-technically speaking it's just what you might have guessed: a softer, more cuddly
version of white noise. As soon as you hook these objects up, they are active. In other
words you don't have to tell them to start working, so you're going to want to have plenty
of ways to control the amplitude of their signal because they can get out of hand in a
hurry.

We covered mtof when we first
looked at fiddle~. ftom also exists as
you might have suspected.

Remember the arguments for reson~ are
gain, center fq. and Q (do as the help patch
suggests and try a range from 0-100 for Q).

Be sure you're able to explain in plain
English what's happening here. Can
you predict what the sound will be
like before you hear it?

The FM synthesis tutorial, which you might conceptualize as
multiplication synthesis if you're just starting out, is also one
that is definitely worth checking out.

Also, for a really slick way to visually control your synthesis
patches look at techno~.

Lesson 9: More on Flow Control

 The flow control of your patch refers to the way in which data is handled and
passed around to various objects. We began looking at the issues involved with flow
control when we routed the pitches coming in from fiddle~ onto various parameters of
groove~ back in Lesson 6. As I've mentioned previously, the ability to have incoming data
effect and control how your audio functions is the primary ability that using Max offers
you over all other audio software. In this lesson, we're simply going to look at a lot more
objects that allow you to manipulate and handle data streams.

split is a Godsend when it comes to handling data streams. It
takes arguments for a range of numbers (notice they can be
negative and floats). Any input that falls within the range is sent
out the left outlet and any input that does not fall within the
range is sent out the right. Note also that any numerical output
can easily be simplified to a bang if you don't actually need the
number.

switch can be thought of as the opposite of a gate. While a gate
takes in only one input and routes it to multiple outputs a switch
takes multiple inputs and routes them to just one output.

dial functions similarly to rslider except it looks like a dial.

scale is an essential object when it comes to manipulating data
streams. It takes two ranges of numbers for arguments. The first
range is the input range and the second is the output range. In
plain language you could say, “the object ‘scales’ the input range
to the output range.”

These are all objects that help to manage data and flow control. All of them are fairly
similar but serve slightly different purposes, and more importantly they all have very
helpful help patches that will be there to help you when their time comes to serve a role in
one of your patches.

 For now, let's look at a couple more commonly used objects and see if we can put
some of the ones we just looked at together to achieve something interesting with a MIDI
data flow.
* This example will work best with a MIDI keyboard. To use it with other MIDI devices

some of the ranges may need to be adjusted.

zl is Max's Swiss Army knife for lists. It does whatever you need it to do with
a list of data. Check out the help patch for it and you'll see what I mean. In
this case, since basic MIDI messages come in groups of three, we are going to
group every three numbers that come out of midiin into a list using zl's
"group" function. Check out the Max window to see the MIDI data coming in.

The second value of a MIDI message is typically the note number. To extract
these numbers from the list we can use zl's "nth" function to filter out all other
values.
* If you have a more complicated MIDI device that sends out things like after
touch, you should look at an object called midiparse to handle the incoming
data.

midiin is explained on the next page.

 Back in the days when Max was just Max and not Max/MSP, everything Max could
do was in some way related to MIDI and all of those old Max objects are still around.
Adding a MIDI controller to your setup is a popular way to enhance user control of your
patches beyond the keyboard and mouse. Adjusting sliders and knobs is just more
intuitive when it comes to handling sound. Usually hooked up to your computer via USB
these days, midiin is the simplest way to bring raw midi data into your patches. midiin
takes an argument for a port specification: this will usually be “a”. Many people who own
USB MIDI devices find it useful to make external objects that are digital mirror images of
their devices physical layout so that they can drop their “device” into any of their patches
and easily assign knobs and sliders to different functions.

 Let's try to track the flow of the signal and describe the usefulness of each object as
the data moves around this patch.

 split is used here to section portions of the keyboards range to serve different
purposes. Pitches from 20-50 effect the pitch of the sine tone which is heard on the left
side of the stereo field and pitches from 50-80 effect the pitch of the sine tone which is
heard on the right side. Pitches above 80 are matched exactly by the sine tone on the
right.

 scale takes the ranges produced by split and expands them. Notice that scale can
invert ranges. i.e. The low value of the input range can be mapped to the high value of the
output range as you can see and hear on the right side. Some especially astute readers
right now might be questioning the usefulness of using two different instances of split.
Why not just have one split with a range from 20-80 and send it to all of the different
scales and let scale do the work? The answer is that scale functions in a less than ideal
way, for it will interpret output values for inputs that are not in the range it is given. This
sounds confusing but give any of the scales a value outside of their input range and you'll
see what I mean. The lesson is to only allow a scale to receive numbers that are in its
given input range.

 The switches let you determine which scale is affecting the frequency of cycle.

 Could you have described this sequence of events on your own? As I've said once
and will say again, knowing what you want to achieve and being able to express it in plain
language is the first step to writing any piece of computer code.

Lesson 10: Randomness

 To some randomness has a trite and trivial connotation, but to others it is a deeply
profound philosophical matter. There are actually multiple conferences held annually that
address the issue of randomness attended by both mathematicians and actual
philosophers. People get together and debate things like whether something can even be
truly random. When you stop to think about this, it is a rather fascinating question
because everything has to come from somewhere, but if you know the source of
something, is it really purely random? Anyways, its interesting food for thought.

 For our purposes, we will set these questions aside and look at others that are more
pertinent: the first of which is interactivity. Interactive art has become extremely popular
in the past couple of years. The word itself has been applied to so many different
scenarios that is has become about as meaningless as the term postmodern. We have
already looked at a couple ways in which it is possible for you to "interact" with your
patches, but I will make the claim for the rest of this book that for something to be truly
interactive there must be a reciprocal relationship between user and machine. Let's first
look to human interactions for some correlations to what I'm talking about. Telling your
computer what to do with the click of a mouse is equivalent to a drill sergeant
commanding a cadet to give him 50 push-ups. Is this an interaction? Sure, but each side
does not inform the other equally. Take, as another example, a conversation with a
colleague about a current project where ideas are exchanged and where each person
leaves the conversation with a new understanding of something, whatever it may be. Now
this is a true and real interaction.

 The first scenario I described when applied to artistic contexts produces art that is
interaction as spectacle. It is art that says look at what I can do. The second scenario,
when applied to artistic contexts, produces true interactions in which both parties involved
(in our specific case the collaboration between you and your computer) benefit and are
informed and changed through the process of collaboration. One of the techniques that
can be employed to generate this type of interactive relationship is the use of randomness
in your patches, for using randomness allows the computer to make a decision on its own
which you can design to be within a specific range of outputs but ultimately will be left to
the computer to determine. Then in response to the computers decision, your reaction can
in turn be informed and thus the conversation begins.

 In an attempt to simplify this concept, you could conceive all of the patches we
have built up until this point as being patches that are designed for performance and what
we are attempting now is to build patches that perform. Let's begin by looking at the
objects Max offers to generate random values and how Max gets these values.

The simplest object for producing random values is
believe it or not random. It takes an argument for the
range of numbers which you want to produce.
Remember that computers start counting with 0, so an
argument of 5 will give you values from 0-4. To
overcome this it is often useful to put a “+ 1” right after
random. random generates values by looking at your
computers internal clock. The seed message tells random
to begin with a specific clock value. Allowing you to
produce the same sequence of random numbers every
time - which kind of defeats the purpose but can be
useful if you happen to find a string of numbers you really
like.

urn is a little more controlled version of random. It
stands for “un-repeating random number”, and does just
that: it will produce every number within the range you
specify without repetitions. After it has gone through all
the numbers, it produces a bang out its right outlet which
if you loop around to a clear message, will restart urn.
Without this, urn will simply shut down.

random only works with integers, but notice that it only
takes a little math to use it to produce floats.

minimum and maximum function similarly. They take in
two values, compare them and make a decision about
which one to output. When used in conjunction with
random, they allow you to control the probability of
receiving different values. For example, when using
maximum a higher value will be more likely than a lower
one. Check out two other objects that are very similar to
maximum and minimum but are even more specialized:
peak and trough.

drunk is the oddball of objects which produce random
values. It takes argument for the maximum value of the
range you want it to produce and a step size. Once you
build this and turn it on, it's easy to see how it works and
also why they call it drunk.

Let's take a look at the patch we built in the last lesson and see how we can
sup' it up with some random objects. As always, make sure you can describe
the function of each object and its purpose. In addition, brainstorm the various
ways you could have a performer respond to the decisions the patch is making.
For starters, if the pitch comes out higher than the one you played, do this. . . if
a pitch you played is matched at a lower volume, do this. . . if higher, do
this. . . if you hear nothing back, do this. . .

Using scale in conjunction with a sizable random allows
you to produce random numbers in any range. Negatives,
floats and ranges that don't begin with zero are all fair
game here. Simply specify the range you want as the
output range of scale. Mathematically speaking, this is
also a truer form of randomness than the one that random
produces on its own. I've included the inlets and outlets
here because I guarantee you this will be one that you'll
want to save to your library for repeated use (its referred to
as rrange in the patch below).

Lesson 11: Cleaning Up Your Patches

 It is always a good idea to leave your patches looking as clean and readable as
possible. While it can be a drag to do so, it is much less of a drag when you do it
immediately after finishing a patch. Trust me when I say coming back to a messy one years
later and having to essentially rewrite the whole thing just to figure out what's going on
will make you hate your life. In addition to looking at ways to clean up your patches,
we'll also take a look at some ways to coordinate multiple patches, for as you get over the
hump and start to feel creatively free to do what you want, your patches will undoubtedly
grow in size.

 Another simple cleaning technique is to hide objects and patch cords when your
patch is locked. To do this simply select the object or a group of objects and go to the
Object menu and choose Hide on Lock.

 Back in the good old days hiding objects when the patch is locked was the only
way to get finished patches to look really professional. Max5 has made this technique
almost obsolete with the new Presentation Mode. To get to Presentation Mode go to the
bottom of your patch and click on the icon that looks like a easel with a line chart on it.
To include objects in Presentation Mode highlight them and control+click on them and
choose Add to Presentation. In Presentation Mode, no patch cords will appear and you
won't be able to do any patching, but you will be able to arrange things so that they look
really good and more importantly user friendly. Anything that you move around in
Presentation Mode doesn't move around in Patching Mode and vice versa. A bit of advise:
don't start messing with Presentation Mode until your patch is all the way done, I mean
absolutely ready to roll.

 Let's start with some basic cleaning advice. So far we
have looked at using inlets and outlets as a way to construct
new objects, however, they can also be used to create what is
known as a subpatcher. This is exactly what is sounds like: a
patch within a patch. To create one copy all of the objects you
want to include and go to the Edit menu and choose
Encapsulate. You'll get an object box with a p, for subpatcher,
which houses all of the code you just "encapsulated." You can
still view the code by double clicking on the subpatch when
your big patch is locked. You can name the subpatch whatever
you want. Subpatchs are especially useful when you have a
large bit of code or a highly specialized piece of code that
you're going to use multiple times within the same patch. Once
you copy and paste a subpatcher, you can give it a new name
and change any of the details inside of it without effecting
earlier iterations.

s and r stand for send and receive, and they are extremely useful for
communicating between patches. s will send its input to any r that has a
matching name. When I say any r, I mean any r. It doesn't matter if it's
in a subpatcher or a completely separate patch on your computers
second monitor, it will get there. When you have to get a message
between patches or send a message to multiple places s and r will save
you from long patch cords and tedious subpatching. For an excellent
tutorial on networking, i.e. communicating between computers with Max
see:
 http://www.cycling74.com/story/2006/10/23/104657/91

A preset is useful for patches that have many variables which you can
choose to control. When you find just the right combination of those
variables, a preset will allow you to store them so that they can be called
upon again. In its default mode it works globally, but you can connect its
left most outlet to specific objects for local presetting. Simply shift+click
on a button to store a preset. preset has a nice help patch which
explains all of its many uses.

t stands for trigger, and anything that it can do, can be done with others
objects so I've included it here because it really just helps you to simplify
things. It allows you to send the same message in multiple forms. The
arguments are b for bang, i for integer, f for float, and l for list.

These are all objects that you know but with a new look. The top two are
ezadc~ and ezdac~. The are identical to adc~ and dac~ except in
appearance and the fact that you can't double click on them to view the
DSP Status menu, which is why I prefer the ugly versions, but the choice
is yours.

These two are more visual versions of gate and switch known as gswitch
and gswitch2. I find these to be useful when writing especially tricky bits
of code when having the visual aid helps me to see how the program is
flowing. A bit of caution though: these objects start in whatever position
they were last saved in, which can be annoying when you reopen a patch
and things aren't working and you can't figure out why. To avoid this give
them a loadmess 0/1 that starts them in the position you want them.

 Here's a bit of code that's been extremely useful to me. I admittedly stole it
outright from a help patch. I could understand the details of it if I wanted to, but I don't
and I know how it works so it's ok. What I do know is that it overlaps a textedit and a
dropfile and that somehow this allows you to populate a umenu with the contents of
whatever file you dragged and drop onto it from anywhere on your hard drive. This is
useful when you want to be able to access a lot of different clips or files - especially when
you want to have access to more clips than your computer allows you to keep in active
RAM. This becomes even more of an issue when working with video files as we'll see in
the next lesson.

 The last little bit I will take the time to explain in more detail. The second outlet of
umenu outputs the menu item as text. prepend allows you to put a piece of text before
any message that it receives (append is also available if you need it). So putting the
message “read” before any file that's in your umenu allows you to easily load that file onto
a buffer~, because as you know, “read blank file" is a message that buffer~ understands.

Adding Color

 panels are one of the easiest ways to delineate different sections of your patches
that serve different purposes. They are just big boxes of color and really help to dress up
your patches. Once you have created one, get into its Inspector and move it to the
background so that it doesn’t cover up other objects and choose a nice interior color for it.

 The border of any object can also be set to a different color by accessing that
objects Inspector.

Lesson 12: Alternate Controllers

 This is a broad a wide ranging subject, but one that really expands the possibilities
of Max ten fold. While there are many books and systems out there that offer ways to link
their equipment to Max, few sources of information start from Max and tell you how to get
out - so that's the approach we are going to take. First let's rewind and make sure
everybody is on the same page. When we talk about alternate controllers, an example
that we've already looked at is a MIDI controller: a device that offers an alternate way to
control your patches. But remember back at the beginning when we talked about where
Max is positioned in the hierarchy of computer programs, well we can draw similar
analogies here. A MIDI controller would be like a highly polished piece of commercial
software in the world of alternate controllers, so as you might expect, there is room to
explore below this. That room is the land of the microcontroller. A microcontroller is an
interface between your computer and the real world. It simply converts information about
the real world into a signal that your computer can understand. While you might not be
aware of it or have maybe even never heard the word before, they are literally all around
you. There are tons of them in your car, for example, and they're even in your TV remote.
The one that I'm going to recommend that you begin with is the Arduino for a couple of
reasons. 1. It's open source 2. It's reasonably priced and 3. It's positioned in the heirarchy
of microcontrollers on a similar plane to Max: it's not completely raw, but it's still
extremely flexible. Spend some time on the Arduino website just so you get an idea of
what a microcontroller even looks like. If you do decide to buy a board, I recommend the
latest version of their USB board.

What can you do with a microcontroller?

 As I was saying, microcontrollers help to get information about the real world into
your computer. They do this by converting information from sensors into a signal your
computer can understand. This brings us to our next big topic: what is a sensor? A sensor
can be as simple as a button, switch or knob and as complicated as an infrared motion
sensor. Here's a short list of the all the physical phenomenon that have corresponding
sensors: light, motion, heat, force, bend, tilt. The ability to specifically tailor a system of
sensors to your needs opens up Max to a myriad of possibilities from interactive art
installation to sculptural scenarios to unique ways to interface with musicians and dancers
to instrument building. The possibilities become even more endless than they already are,
and there’s still another dimension to this whole realm that I haven’t even mentioned.
Microcontrollers can also output information that can be used to control everything from
an LED to a stepper motor. In other words, think of the land of microcontrollers as an
open invitation to feel empowered about thinking of ways to sense and control the
physical world.

Getting Started

 Once your board arrives, if you've decided to purchase one, spend some time on
the Ardunio website under the "getting started" and "learning" tabs. The Arduino website

has become extremely friendly for beginners over the years, which is another reason why
I'm endorsing this system. Microcontrollers are perfectly capable of functioning on their
own, even without a computer, understanding how they function is the first step to
understanding how they interact with Max. In addition, spending just a little bit of time
trying to tackle some of the straight Arduino code will dramatically improve your
understanding of how Max code functions. So put this book down and get online.

 As you should have picked up from the Arduino website, most microcontrollers still
communicate with computers using serial ports, which are now simulated with USB
connections. Serial communication is based on a very old computer protocol known as
RS-232 which harkens back to the days of printer paper with all those little holes on the
side of it and computer monitors with flashing white boxes and no mouses. Anyways, all
you really need to know is that Max is capable of communicating over serial ports as well
with an object called serial. It forms the basis for communication between Max and any
other program, including microcontrollers. Its first argument specifies a port and the
second argument specifies the baud rate, basically the speed at which data is being passed
back and forth (9600 is a good starting point). Sending serial the “print” command will
print a list of all available ports to your Max window, if you have your Arduino hooked up
you should see its port listed first. You can set the Arduino's port from within its software
(when two options are given choose the “.cu.”)

 At this point, you should get back online and download the Simple Message System
from this website:

 http://www.arduino.cc/playground/Code/SimpleMessageSystem

This is a system which facilitates the communication between your Arduino and your Max
patches. In the folder, you'll find instructions about how to install the needed files into
Arduino's library. You'll want to take all of these steps and upload the
SimpleMessageSystem program onto your Arduino board. Once you do this, any
programming you want to do for the Arduino can be achieved from within Max.

 What follows is admittedly a quick and dirty introduction, however, I hope that
your curiosity has been peaked about the possibilities of exploring microcontrollers
further. There’ll be some other things you’ll need to figure out on your journey down this
path which fall beyond the scope of this book and include soldering, breadboarding and
an understanding of some basic circuitry, but do not be afraid - remember how scary Max
used to be!

 I’ve set this patch up to be an external because if you get into doing this kind of
work it’s helpful to have an “Arduino” object which you can easily call on.
max2asciimessage and asciimessage2max are objects which come with the
SimpleMessageSystem. If you open them up, there are a few objects which we haven’t
covered which help to translate information to and from the ASCII protocol which is how
they have to be broadcast over the serial port. spell, fromsymbol and itoa all have
adequate help patches. Remember that we first looked at the ASCII numbers when
dealing with key.

You can now write to the Arduino and pole it with the following types of messages:

 The first one, “w d 5 1” is translated via the SimpleMessageSystem objects to mean
“write digital pin 5 to HIGH” to the Arduino. The Arduino is also capable of simulating
analog out on a select number of pins which is illustrated in the second example. “w a 6
$1” is translated by the Arduino as “write analog pin 6 to the value of the number box
(0-255)”. The third example illustrates how you would pole all of the Arduinos analog ins
at a sampling rate of 10 times per second. Sending this message to your “Arduino” object
will cause the Arduino to return values to Max which can be viewed coming out of the six
outlets at the bottom of the patch.

Lesson 13: Jitter

 If you want to get yourself really confused, really quickly, start reading the Jitter
tutorials. If you think that the Max tutorials make leaps too quickly, wait till you come
upon the jargon that bogs down anybody who is trying to get a handle on Jitter. As has
been our approach so far, we're going to come at Jitter with the hopes of breaking it down.
Admittedly, we won't cover all of the objects, but I'll do my best to give you the basics and
some general ideas about how to approach Jitter.

 First of all, if you haven't figured it out all ready, Jitter is the set of objects that
expands Max into the visual realm (Gem is the PD equivalent). There are two freestanding
programs which Jitter stands on: Quicktime and OpenGL. These two programs mark the
two different functions of Jitter which I am going to propose.

Let's start by looking at what Jitter can do via Quicktime.

Quicktime

 Any video format that can be opened and played using Quicktime, will work best
with Jitter. Other formats can work, but stick to those formats which QT likes best,
like .mov, it'll save you a lot of hassle. Before you can walk you have to crawl, so let's
dumb down movie playback to its essential elements.

jit.qt.movie is kind of like a combination of buffer~ and play~ for a
movie. A movie file has to be read into it as you can see, but it's
also the object that plays back the movie. To playback the movie a
qmetro has to be on and attached to jit.qt.movie. qmetro is a
special kind of metronome, the details of which you should not
concern yourself, but its function is to tell jit.qt.movie how often to
output an image from its internal "buffer". 30 ms is the standard
setting, and while this is not exactly equivalent to frame rate it can
be thought of similarly. The object jit.pwindow provides an in patch
screen which allows you to see the movie. Notice that Jitter patch
cords which actually handle an image have their own unique look
just like audio patch cords.

Jitter objects pass around what is known as a matrix. A Jitter matrix is
essentially a grid of values that describes the color of each individual pixel
which comprises a single image. Open your Max window and run this
patch to get a visual idea of what a matrix actually consists of. jit.print
allows you to print the numerical values of a Jitter matrix into the Max
window.

An rslider is a special type of slider that allows
you to select a range of numbers: which works
well for trying to set individual loop points.
Attaching “frame” to the rslider allows you to
visualize the loop points your setting on the
jit.pwindow. It is useful to use this in
conjunction with a preset so that you can
easily recall the loops that you like.

There are a plethora of messages that allow you
to query jit.qt.movie for information about the
video that you read into it. “getduration” and
“getdim”(ension) are two of the most useful.
When asked for, these will come out of the
right outlet of jit.qt.movie. Putting the duration
into a size message for rslider will ensure that
your slider covers the exact range of your clip.
Sending the dimensions immediately back into
jit.qt.movie sets the objects buffer to conform
to the original dimensions of the movie
ensuring the best quality of playback and that
no buffer space is under or over utilized.

pak is a special version of pack which outputs
a list whenever any of the values change.
Remember that pack only outputs its list when
the left most inlet receives a new value.

Now that we're starting to crawl around a little bit, let's see if we can
take our first baby step by looking at some of the ways we can affect the
playback of a movie.

One of the simplest aspect of playback to control is speed which is
communicated with the rate message. 1=normal playback, 2=twice
as fast, .5=half speed, etc. Experiment with line and see what you
can do. Negatives are also fair game here and can be used to
interesting effect.

Looping is another obvious parameter to control. With video there's an
option that we don't typically encounter with audio that is ping-pong.
Ping-pong looping plays something through start to finish and then loops
by playing from the end of the clip back to the beginning instead of
looping from the end straight back to the beginning. Try it out and you'll
easily see what I'm talking about.

 You are not limited to playing videos only inside of your
patches. To create a screen which exists outside of your patch,
call upon jit.window, give it a name, and it seems to like to
know that you want it to be rectangular. It’s also a good idea to
pass it the original dimensions of your movie. The subpatcher,

“p esc-fullscreen” can be stolen from jit.window’s help patch. Inside, is a key/sel
combination which allows the esc key to toggle a “fullscreen” message for jit.window.
The window that you create can easily be dragged onto your second screen for projection
so that you can still operate a patch from your main screen.

 Now that we've hit some of the major ways that you can control playback, here is a
laundry list of objects which actually affect the image.

All of these objects offer different kinds of video effects, and all have clearly written help
patches which I highly recommend stealing from. Check them all out. They are all worth
it.

OpenGL

 The other half of what Jitter can do is based on a program called OpenGL.
OpenGL is a rather simple program that 3D designers and animators rely on to test their
models after they have sculpted them in programs like Blender and Maya. OpenGL is
kind of like Preview for 3D object files. The basis of OpenGL in Max is jit.gl.render.
jit.gl.render takes an argument for a window name and can be either a "pwindow" or an
"outside of your patch window". Once you have set jit.gl.render to a window, only
OpenGL objects (jit.gl.___) will be able to display things on that window. This is why I say
that there are really two halves to Jitter: don't think that you can operate OpenGL on top
of a Quicktime movie playing in the background cause it ain't gonna happen. jit.gl.render
needs a qmetro, just like jit.qt.movie does, with one exception: every time you want
jit.gl.render to display a new image you have to erase the old image. This is why we have
the trigger set up with a bang and the message to "erase" (remember that Max processes
data from right to left).

 While it is possible to display 3D objects that
you have rendered in other programs with Max,
Jitter also offers a variety of ways to sculpt 3D
objects from within the environment. All digital 3D
models usually begin with a "primitive" geometric
figure. jit.gl.gridshape is the most basic object
which creates these shapes (there are more than I
have listed here). Notice that it also has to have an
argument for a window, and, furthermore, it has to
be a window with a jit.gl.render operating on it or
you are not going to see anything. In addition to
rendering these shapes, jit.gl.gridshape also
understands messages which affect the "scale" and
"position" of the objects it creates.

 There is one way, and only one way, in which
you can meld the two halves of Jitter. jit.gl.render can
create a "texture" on an object out of a still or moving
image. Notice that you have to send an additional
message, "usetexture", before the texture appears on the
object. This makes it easy to switch rather rapidly
between textures.

 jit.gl.handle allows you to use your mouse to
rotate objects that are being rendered. Sending the
message "visible" makes all of the handles which allow
you to rotate an object on different axis visible. This is a
useful object when it comes to creating interactive
installations.

 In addition to shapes, OpenGL can also render
text in either 2 or 3 dimensions. Guess which one
jit.gl.text3d does? The "text" message will render
whatever text you insert after it. jit.gl.text3d understands
the "scale" and "position" messages that we used with
jit.gl.gridshape. Text can also be “textured” and used in
conjunction with jit.gl.handle.

Lesson 14: Building Applications

 At the end of the day, when you have crafted the next piece of genius audio/visual
software, something you might want to do is make it into a real life application that you
can share with your friends. Max makes this incredibly easy for you to do.

Take your patch, however simple or complex it might be and include a standalone object.
We'll use the following patch as an example:

The inspector for standalone lets you set the
parameters you want for your application.
Most of the defaults are what you're looking
for, but it's good to know where this all comes
from. Checking audio and midi support will
ensure that all of Max's audio/MIDI drivers are
included in your application.

	 Tip #1: It's important to have a way to turn DSP on and off from inside of your
patch when getting ready to build an application.

Now follow these steps:

1. Go to File / Build Collective / Application

 This screen allows you to write a script that serves as the start up script for you
application. Basically, it tells the application everything it needs to look for and load upon
start up. The command "open thispatcher" is, rather obviously, referring to the patch from
which you started the application builder. Any subpatches that are within your application
will automatically be included, but if you have sound or text files that your patch needs to
run, choose whether they are in a file or folder and include them in your script. If your
application is going to be made up of more than one patch, you'll need to include all of
the patches in the script that the application will need.

2. Once everything is in your script tell it to "build". The order of items in your script is not
important.

3. When you get to the Save screen, there will be a drop down menu at the bottom which
will give you an option about the format for your application.

 Here's the difference between the two formats: A Max collective requires Max
Runtime in order to function properly. An application does not; an application can stand
on its very own on any machine of the same platform which you used to build it. (This is
an important point, an application built on an Apple computer will not function on a PC
and vice versa.) Collections are really only useful when a program is dependent on a lot

of different patches and external files, for as you know, a normal everyday patch can be
opened and run from Runtime without being saved as a "collective". I guess the argument
would be that saving it as a collection doesn't allow the recipient to mess with your code.
Anyways, building Applications is a far more useful avenue in my mind, and who knows,
potentially lucrative as well.

Object Index by Lesson

!= 2
*~ 1
+ 6
- 5
/ 5
< 2
accum 6
adc~ 4
adsr~ 8
append 11
bondo 9
bucket 9
buddy 9
buffer~ 1
button 1
change 6
comment 1
counter 3
cycle~ 8
dac~ 1
del 5
dial 9
dropfile 11
drunk 10
expr 7
ezadc~ 11
ezdac~ 11
fiddle~ 6
freeverb~ 7
fromsymbol 12
ftom 8
function 8
funnel 9
gate 6
gizmo~ 7
groove~ 6
gswitch2 11
gswitch 11
i 5
itoa 12
jit.gl.gridshape 13
jit.gl.handle 13
jit.gl.render 13
jit.gl.text3d 13

jit.print 13
jit.pwindow 13
jit.qt.movie 13
jit.window 13
key 6
kslider 7
line 5
line~ 1
loadbang 6
loadmess 6
maximum 10
message 1
meter 4
metro 3
midiin 9
midiparse 9
minimum 10
mtof 6
number(~) 1
o 5
onebang 6
pack 5
pak 13
pan2~ 7
panel 11
peak 10
pipe 5
play~ 1
prepend 11
preset 11
print 5
qmetro 13
r 11
radiogroup 7
random 10
record~ 4
rect~ 8
reson~ 7
route 9
router 9
s 11
saw~ 8
scale 9
scope~ 8

sel 2
sig~ 6
slider 7
spell 12
spigot 6
split 9
spray 9
standalone 14
switch 9
t 11
tapin~ 5
tapout~ 5
techno~ 8
textedit 11
toggle 2
tri~ 8
trough 10
umenu 11
unpack 5
urn 10
zl 9

	title
	tableofcontents
	intro
	lesson1
	lesson2
	lesson3
	lesson4
	lesson5
	lesson6
	lesson7
	lesson8
	lesson9
	lesson10
	lesson11
	lesson12
	lesson13
	lesson14
	index

